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Fig. 1. Animation Transfer from Unseen Motion to Di!erent Characters.We present a self-supervised method to transfer coarse motion sequences,
embedded in a learned Kinetic Code (KC) space, to full body motion. Samples from the KC space can be consumed by our method, Self-supervised Motion
Fields (SMF), to produce mesh animations. Our method is trained with sparse signals and can be used for motion interpolation . We do not assume access
to any morphable model, canonical template mesh, or deformation rigs. Le! shows various sparse motion inputs (3D keyframes, Mixamo sequences, or
monocular video) that can be embedded into the learned KC space and decoded, and consumed by temporally coherent motion prediction via SMF to produce
animations for di"erent characters (right), with varying topology and shapes. SMF can faithfully transfer human motion to non-humanoid characters.

Animation retargetting applies sparse motion description (e.g., keypoint
sequences) to a character mesh to produce a semantically plausible and
temporally coherent full-body mesh sequence. Existing approaches come
with restrictions – they require access to template-based shape priors or
artist-designed deformation rigs, su!er from limited generalization to unseen
motion and/or shapes, or exhibit motion jitter. We propose Self-supervised
Motion Fields (SMF), a self-supervised framework that is trained with only
sparse motion representations, without requiring dataset-speci"c annota-
tions, templates, or rigs. At the heart of our method are Kinetic Codes, a novel
autoencoder-based sparse motion encoding, that exposes a semantically rich
latent space, simplifying large-scale training. Our architecture comprises
∗Both authors contributed equally to this research.

Authors’ Contact Information: SanjeevMuralikrishnan, sanjeev.muralikrishnan.20@ucl.
ac.uk, University College London, UK and Dolby Laboratories, India; Niladri Shekhar
Dutt, niladri.dutt.22@ucl.ac.uk, University College London, UK; Niloy J. Mitra, n.mitra@
cs.ucl.ac.uk, University College London, UK and Adobe Research, UK.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci"c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/12-ART261
https://doi.org/10.1145/3763309

dedicated spatial and temporal gradient predictors, which are jointly trained
in an end-to-end fashion. The combined network, regularized by the Kinetic
Codes’ latent space, has good generalization across both unseen shapes and
new motions. We evaluated our method on unseen motion sampled from
AMASS, D4D, Mixamo, and raw monocular video for animation transfer on
various characters with varying shapes and topology. We report a new SoTA
on the AMASS dataset in the context of generalization to unseen motion.

CCS Concepts: • Computing methodologies → Machine learning ap-
proaches; Shape analysis; Motion processing; Motion capture; Temporal
reasoning; Animation.
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1 Introduction
Motion brings characters to life. To build any digital twin world,
be it for scenario planning, games, or movies, adding motion to
static characters is a fundamental requirement. Manually authoring
full-body motion is tedious, error-prone, and requires signi"cant
e!ort from skilled artists. This quickly becomes expensive when
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scaling to long sequences or animating many di!erent characters.
Hence, researchers seek data-driven solutions.
Traditional approaches investigate this problem with explicit

priors — statistical body templates (e.g., SMPL [Loper et al. 2015]
for humans, CAFM [Sun and Murata 2020] for animals) to model
shape and pose variations or constructing speci"c character rigs
to transfer joint motion to full body motion via skinning weights.
These approaches are simple, popular, and robust, but come at the
cost of having to "rst build an expressive shape space along with a
corresponding pose space, and are restricted to speci"c templates.
Automating these work#ows with learning-based solutions has

gained popularity: learning a space of stick "gure character motion
(e.g., neural motion "eld [He et al. 2022]) or phase-based character
control [Holden et al. 2017]); enabling deformation transfer from a
source-target pair to a new shape via neural Jacobian "elds [Aiger-
man et al. 2022; Muralikrishnan et al. 2024]; or learning skinning
weights from a set of annotated rigged characters [Qin et al. 2023;
Xu et al. 2020]. These approaches, however, require various levels
of intermediate supervision, are limited in their handling of motion
or shape variations, and su!er from limited generalization.
Given a coarse motion speci"cation, we transfer animation to a

full-character mesh,without access to any rig ormorphable template,
at train or test times. A natural approach is to treat this as a sequence
prediction problem. However, this quickly leads to memory issues as
the animations’ length or the meshes’ resolution increases. Increas-
ing the network capacity adversely a!ects the situation, leading
to over"tting as we often have sparse/limited training data. Also,
treating the problem at the frame level is e$cient, but leads to jittery
motion without any temporal coupling.
Inspired by the recent success of latent space di!usion mod-

els [Rombach et al. 2021] over pixel space di!usion models, we ask if
a similar latent space can be designed for (sparse) motion sequences.
To this end, we propose Kinetic Codes, a temporally-informed light-
weight motion autoencoder, that we train over a collection of sparse
(humanoid) motion sequences across all types of motion. (Since we
only rely on keypoints, instead of body meshes/template, we call
the latent space kinetic instead of kinematic.) Regularized by this
latent space, we train a spatial and a temporal gradient predictor
network. We couple the networks through di!erentiable spacetime
integration and supervise the framework, in an end-to-end fashion.
By representing source motion using only keypoints, we elim-

inate the need for geometric constraints such as 2-manifoldness,
watertightness, or "xed triangulation in source meshes. Moreover,
our motion representation allows for 2D source motion as input,
which can be transferred to any stylized character (see Figure 1).
This keypoint-based representation simpli"es motion capture and
facilitates sampling and interpolation of motions.
We evaluate SMF for generalization across diverse shapes and

unseen motion, and compare against various alternatives. We eval-
uate our setup on a range of diverse shapes and motion datasets
(e.g., AMASS, D4D, Mixamo, monocular video). In summary, we:
(i) propose a self-supervised animation transfer framework regu-
larized by kinetic codes, a learned temporally aware latent space;
(ii) develop a rig- and template-free animation transfer framework
based on simple keypoints as input that is easy to train with sparse
supervision and generalizes robustly to new motions and stylized

characters; and (iii) report a new SoTA on the AMASS dataset and
show realistic motion transfer to in-the-wild stylized characters
using di!erent 3D as well as 2D coarse space motion speci"cations.
Code, weights, and supplementary are available on the project

webpage at https://motion"elds.github.io/.

2 Related Works
Encoding shape deformation. Parameterized deformation approaches

represent 2D or 3D shapes through a predetermined function of
shared parameters and capture deformations as variations of these
parameters. A popular example of such models is morphable mod-
els [Egger et al. 2019]. Such techniques encompass cages, explicit
formulations [Ju et al. 2005] or neural approaches [Yifan et al. 2020],
blendshapes [Lewis et al. 2014], skinned skeletons [Jacobson et al.
2014], Laplacian eigenfunctions [Rong et al. 2008], etc. Linking
these parameters to the shapes’ surface typically necessitates man-
ual annotation of weights, commonly called weight painting, in
3D authoring tools. Alternatively, with access to su$cient super-
vision data, data-driven approaches can yield realistic neural rigs,
as exempli"ed by Pinocchio [Baran and Popovi% 2007], RigNet [Xu
et al. 2020], skinning-based motion retargeting [Aberman et al. 2020;
Marsot et al. 2023; Zhang et al. 2023], and skeletal articulations with
neural blend shapes [Li et al. 2021a]. Unsupervised shape and pose
disentanglement [Zhou et al. 2020] proposes learning a disentangled
latent representation of shape and pose, facilitating motion transfer
using shape codes, dependent on registered meshes and maintaining
identical connectivity. To plausibly animate these parameterized
shapes over time, the parameters should evolve dynamically, weigh-
ing the mesh. Although these methodologies require access to body
templates and/or rigs, they can still produce jittery results due to
loose coupling of individual frame predictions.

Notably, Skeleton-free pose transfer [Liao et al. 2022] aims to al-
leviate the need for rigs by treating the character pose as a set of in-
dependent part deformations. By learning the skinning weights and
deformations associated with each module, it can match the source
pose using linear blending of skinning weights. While it achieves im-
pressive results in pose transfer, being a per-frame method, it su!ers
from artifacts and lacks temporal coherence when applied to anima-
tion transfer, as observed in our results. Furthermore, its reliance
on both source and target shapes being provided in a rest T-pose
presents a practical limitation, as such canonical poses are often
di$cult to de"ne for non-humanoids. This dependency challenges
its classi"cation as a truly rig-free method.

Modeling motion as sequence prediction. Deep recurrent neural
networks are capable of modeling time and shape sequences using
LSTMs to predict human joints [Fragkiadaki et al. 2015], generate
motion in-betweening [Harvey et al. 2020], and to learn a motion
"eld through time [He et al. 2022]. These approaches require access
to templates/rigs, and large datasets of joint motion since they are
discrete time representations. Qiao et al. [2018] utilize mesh convo-
lutions with LSTMs to deform vertices through time; while, Motion
Di!usion [Raab et al. 2023] uses local attention to capture motifs of
a single motion and combines it with a di!usion UNet module to
produce motion extrapolation and in-betweening. The main chal-
lenge is handling long (extrapolation) sequences while still being
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able to generalize to unseen motion. In this work, we propose using
Augmented Neural ODEs [Dupont et al. 2019], operating through
temporally-aware kinetic codes, to model time continuously instead
of using discretized sequential networks such as LSTMs.

Modeling motion using morphable templates. Temporal surface
e!ects can be modeled, physically correctly, by simulating the un-
derlying soft tissues with "nite element methods [Chadwick et al.
1989; Fan et al. 2014]. However, this direct simulation is often slow
and requires artists to design the underlying bone and muscle struc-
ture [Abdrashitov et al. 2021]. To overcome the sti!ness problem
and speed up the simulation, reduced-order models have been pro-
posed [Modi et al. 2020; Park and Hodgins 2008]. When character
rigs are available, approaches have been proposed to add soft tis-
sue deformation as an additive per-vertex bump map on top of a
primary motion model. Santesteban et al. [2020] use this approach,
AMASS [Mahmood et al. 2019] imparts secondary motion using the
blending coe$cients of the SMPL shape space [Loper et al. 2015],
while Dyna [Pons-Moll et al. 2015] learns a data-driven model of
soft-tissue deformations using a linear PCA subspace. However,
these methods require access to primary motion via a skeleton rig
and are restricted to humans registered to a canonical template.
Temporal Residual Jacobian (TRJ) [Muralikrishnan et al. 2024]

uses NJF and ODE for motion retargeting, and demonstrates good
generalization across shapes. However, TRJ requires motion anno-
tation and also access to SMPL template during training, has to be
retrained for di!erent motion classes, produces jitters due to per-
frame prediction, and does not generalize to unseen motion. Unlike
TRJ, which requires a template to learn motion transfer between dif-
ferent shapes, our self-supervised method reconstructs the original
motion on the same shape, eliminating the need for annotated data.

3 Algorithm
Our goal is to animate unrigged triangulated meshes of 3D char-
acters, conditioned on coarse motion signal. These motion control
parameters are de"ned at a few keypoints of the body, can be varied
in representation (e.g., 2D or 3D), and specify the target pose per
frame. We learn to map these coarse keypoint parameters to dense
3D meshes and, as output, generate an animated 3D mesh at every
frame described by the input motion. This nulli"es the need for any
consistent mesh template or "xed triangulation for both the source
motion as well as the target character. Additionally, our method gen-
eralizes to unseen motion targets and unseen body shapes, learns
from sparse datasets containing a mix of motion examples, and can
be applied to long motion sequences.

3.1 Overview
Ourmethod is a module named Self-SupervisedMotion Fields (𝐿𝑀𝑁 )
that maps inputs describing a target shape, 𝑂0, and motion, {𝑃𝐿 }, to
per-frame motion as 3D meshes,

𝑂𝐿 := 𝐿𝑀𝑁 (. . . ), (1)

where 𝑂𝐿 denotes the mesh vertices at frame 𝑄 .

Input representation. Our inputs are coarse motion parameters,
de"ned as 𝑃𝐿 , which characterize the pose required in each frame 𝑄
and the target triangulated mesh de"ned as 𝑂0. In our experiments,

we have tested 𝑄 ranging from 200 (short) to 4000 (long) sequences.
We de"ne 𝑃𝐿 at "xed keypoints extracted automatically from a given
body. Speci"cally, 𝑃𝐿 is a 𝑅 𝑀𝑁𝑂𝑃𝑄𝑅 ↑𝑆 vector at each time step, where
𝑅 𝑀𝑁𝑂𝑃𝑄𝑅 is the number of keypoints/joints and 𝑆 is the dimension-
ality of the chosen input representation. This representation can
be 3D keypoint locations on a mesh, 2D keypoints de"ned on a
stick "gure frame, or 3D relative Euler angles computed according
to the kinematic tree of the chosen pose space. In this work, we
focus on results with 2D and 3D keypoints, as we observe their
performance to be more robust than 3D relative Euler angles. Our
method is self-supervised as we automatically extract the keypoints
from mesh sequence.
We now de"ne our module from Equation (1) as,

𝑂𝐿 := 𝐿𝑀𝑁 (𝑃𝐿 ,𝑂0,𝑇), (2)

where𝑇 describes additional geometric features of the target charac-
ter such as centroids, normals, and Wave Kernel Signatures [Aubry
et al. 2011] computed on the faces of 𝑂0 and encoded per-face using
a shallow PointNet [Qi et al. 2016]. These additional features estab-
lish correspondence during inference on unseen in-the-wild shapes.
We jointly train the PointNet network and other networks in our
system. Figure 2 presents an overview of our method.

Keypoint extraction. We semi-automatically extract the keypoints
𝑃𝐿 . We start with a one-time manual annotation of one human
and one animal shape, performed by selecting mesh faces at joint
locations. These sparse annotations are then automatically prop-
agated across all characters and motions using point correspon-
dences computed with Di!3F [Dutt et al. 2024]. Our framework is

One-time Annotation

Di�3F

Keypoints Mappedrobust to variations be-
tween character setups; for
example, it bridges the gap
even when target keypoint
locations (e.g., from Mix-
amo) di!er from the source.
This #exibility is possible
because our method only
requires the number and order of keypoints to be consistent, not
their exact spatial positions. This process, where we annotate just
two shapes once, allows us to robustly handle diverse character and
motion datasets. For extracting 2D keypoints from RGB videos, we
use HRNet [Sun et al. 2019], a pretrained pose extractor.

3.2 Kinetic Codes: Temporally-Informed Motion
Representation

At the core of our method is the shape deformation module 𝑈𝑆 . We
observed that naively passing the extracted coarse motion parame-
ters 𝑃𝐿 to 𝑈𝑆 impairs training, and leads to poor generalization and
artifacts on unseen motions (see ablation in Section 4). This is un-
surprising as an individual 𝑃𝐿 does not contain any temporal motion
information or context. Therefore, we "rst embed 𝑃𝐿 in the latent
space of an autoencoder. By coupling information across time, this
representation leads to smoother interpolation, thereby enhancing
generalization to unseen motions.

Further, given the sparsity of training data, we "nd that using the
displacements of the motion parameters as inputs, instead of their
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Fig. 2. Method overview. We present a self-supervised learning setup to transfer sparse motion information, specified in the form of keypoints over time, to
target characters producing full-body motion. Top: During training, given a motion dataset we extract sparse keypoints from the meshes and encode them to a
novel Kinetic Code representation. We then train two networks to map the rest shape and the Kinetic Code to the full body motion, with only mesh-level
reconstruction loss. Bo!om: At inference, we drop in stylized characters (Hole Man) and unseen motion inputs to obtain full-body character animation.

absolute values, signi"cantly boosts generalization to unseen mo-
tion. Therefore, we express 𝑃𝐿 as displacement vectors with respect
to the "rst frame motion parameter 𝑃0 as,

𝑃𝑇𝐿 := 𝑃𝐿 ↓ 𝑃0 . (3)

We then train a multi-headed attention auto-encoder with self-
attention to reconstruct 𝑃𝑇𝐿 as,

𝑉𝐿 = E𝑈 (𝑃𝑇𝐿 , {𝑃
𝑇
1 , . . . ,𝑃

𝑇
𝐿 , . . . ,𝑃

𝑇
𝑉𝐿

}) (4)

𝑃𝐿 = D𝑈 (𝑉𝐿 ), (5)

where E𝑈 , D𝑈 are multi-headed attention encoder and decoder net-
works, respectively; 𝑉𝐿 is the per-frame latent motion representation,
referred to as kinetic code, of the same dimensionality as 𝑃𝐿 , and
𝑃𝐿 are the decoded motion displacements; 𝑅𝑊 refers to number of
frames.
The length of the sequence
can vary across motion
samples. Note that we use
attention on the full se-
quence as context, and
hence a single frame 𝑉𝐿 has
an understanding of the
broader motion sequence.

We train the auto-encoder by minimizing the reconstruction loss,

𝑊𝑈 :=
𝑉𝐿∑
𝐿=1

↔𝑃𝐿 ↓ 𝑃𝑇𝐿 ↔
2 . (6)

Thus, we obtain a temporally-informed latent motion representation
𝑉𝐿 , which is more conducive to interpolation, resulting in improved
generalization to unseen motions and unseen shapes. For our defor-
mation module (described next), we only use 𝑉𝐿 as the per-frame
motion representation, and freeze E𝑈 and D𝑈 .

3.3 3D Shape Posing via Deformation Module
Inputs to our shape deformation module 𝑈𝑆 comprise the initial
con"guration, speci"cally the shape 𝑂0 in its canonical rest pose,

the learned motion latents 𝑉𝐿 , and the geometric features𝑇 (derived
from 𝑂0). The module 𝑈𝑆 is designed to forecast the pose for each
time step 𝑄 ↗ [1,𝑅𝑊 ]. While 𝑈𝑆 could be trained to directly forecast
the target vertex positions, such an approach results in artifacts,
including #ipped and folded faces. Following neural gradient space
processing [Aigerman et al. 2022; Muralikrishnan et al. 2024], we
use a simple MLP to predict a$ne transformation matrices, labeled
as Jacobians, at the centroids of the mesh faces, thus encoding
relative transforms [Sumner and Popovi% 2004]. Speci"cally, we
predict "nal vertex positions using predicted Jacobians, integrated
through a di!erentiable Poisson solver to solve a system of linear
equations. We supervise this using vertex-to-vertex and Jacobian
losses to ensure accuracy in matching ground-truth data; this frees
us from requiring additional annotation data. This improves shape
consistency and canmodel various deformations by predicting a$ne
transformations to mesh faces. Concretely, we de"ne,

𝑋𝑋𝐿 = 𝑈𝑆 (𝑋0, 𝑉𝐿 ,𝑇)
𝑋𝐿 = 𝑋0 + 𝑋𝑋𝐿 = 𝑋0 + 𝑈𝑆 (𝑋0, 𝑉𝐿 ,𝑇), (7)

where 𝑋0 is the Jacobian of the initial frame shape 𝑂0 and 𝑋𝑋𝐿 are
intermediate residuals predicted by 𝑈𝑆 , which are added to 𝑋0 to
produce the Jacobian 𝑋𝐿 for the 𝑄𝑄𝑌 frame. We found that predicting
the Jacobians using the Kinetic codes, coupled with residual con-
nections leads to signi"cantly faster and well-behaved convergence
and better generalization. Note that 𝑋0 is the identity transforma-
tion projected on the local basis of each face of 𝑂0 by rotation. All
Jacobians are predicted in the central coordinate frame de"ned by
the local bases of the faces of 𝑂0.
We can now directly ob-

tain "nal vertex positions
using the Poisson Solver
on the predicted Jacobians.
However, as we drift away
from the pose of the initial shape𝑂0 or when inferring on unseenmo-
tion parameters, accumulated error leads to shape inconsistencies
and artifacts. Additionally, 𝑈𝑆 utilizes only coarse motion param-
eters and, by itself, is unable to produce temporally coherent and
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smooth motions on dense meshes for long sequences. Hence, we use
an Augmented ODE based formulation, described next, to enable
temporally coherent predictions.

3.4 Temporally Coherent Motion Prediction
Motion prediction. We introduce a second stage that learns to

predict a dynamic correction to the initial pose estimate to enforce
temporal coherence. We predict the sequences in chunks of consec-
utive frames, i.e., the given sequence is split into "xed windows,
each of size𝑌 (𝑌 = 32 in our tests). We set the initial state of the
NODE as the Corrective Jacobians required for the "rst frame as,

𝑋𝑍0 = 0 ↗ R3↑3 . (8)

To make this operable with ANODE [Dupont et al. 2019], we aug-
ment the initial state with extra dimensions. We follow the recom-
mendations of the original work and set the extra dimensions to
0 ↗ R𝑎 where 𝑍 denotes the number of extra (augmented) dimen-
sions to be added.We use𝑍 = 256 for all our experiments. In essence,
these augmented dimensions act as a form of temporal memory for
the ODE. By lifting the state space to a higher dimensional space
where it can more easily predict the required trajectories, the sys-
tem is able to maintain a richer state representation of the motion’s
history. This simpli"es the task of learning the corrective dynamics
needed to prevent drift. In other words, temporal message passing
helps predict the corrective Jacobians. Equation (8) becomes,

𝑋𝑍0 = 0 ↗ R(3↑3)+𝑎 . (9)

We predict the correctives in the augmented space "rst, which is
driven by an MLP 𝑈𝑍 that predicts the rate of change of the correc-
tives in time. The function 𝑈𝑍 models the rate of change of the drift
based on conditioning factors,

𝑎𝑋𝑍𝐿
𝑎𝑏

= 𝑈𝑍 (𝑋0, 𝑐𝑏𝑐𝑀
, 𝑐𝑍𝑐𝑀↓1 , 𝑏) (10)

where 𝑋0, as de"ned previously, are the Jacobians of the "rst frame;
𝑐𝑏𝑐𝑀

is the attention encoding of the current window of Jacobian
predictions 𝑋𝐿 from Equation (7) and 𝑐𝑍𝑐𝑀↓1

is the attention encod-
ing of the previous window of corrective predictions. Intuitively,
𝑐𝑏𝑐𝑀

provides the context of the current motion’s structure, while
𝑐𝑍𝑐𝑀↓1

informs the model about the accumulated error from the previ-
ous window. We integrate the local changes over time using Euler’s
method to obtain 𝑋𝑍𝐿 at each time as,

𝑋𝑍𝐿 =
∫ 𝑄

0

𝑎𝑋𝑍𝐿
𝑎𝑏

𝑑𝑏 + 𝑋𝑍0 =
∫ 𝑄

0
𝑈𝑍 (𝑋0, 𝑐𝑏𝑐𝑀

, 𝑐𝑍𝑐𝑀↓1 , 𝑏)𝑑𝑏 + 𝑋𝑍0 . (11)

Since 𝑋𝑍𝐿 is in the augmented space, we use a "nal linear projection
with learnable weights (𝑌𝑑 ) to map it back to the original unaug-
mented space. Speci"cally,

𝑋𝑍𝐿 =𝑌𝑑 𝑋
𝑍
𝐿 (12)

where𝑌𝑑 is simply the learnable weights of the last linear layer
projecting from (3 ↑ 3) +𝑍 to the (3 ↑ 3) Jacobian.
Our jointly trained attention encoders are de"ned as,

𝑐𝑏𝑐𝑀
= 𝑐𝑏 (𝑋𝐿 :𝐿+𝑐 ,𝑒𝐿 :𝐿+𝑐 )

𝑐𝑍𝑐𝑀↓1 = 𝑐𝑍 (𝑋𝑍𝐿 :𝐿↓𝑐 ,𝑒𝐿 :𝐿↓𝑐 ), (13)

where 𝑐𝑏 and 𝑐𝑍 are multi-head attention networks, 𝑋𝐿 :𝐿+𝑐 and
𝑋𝑍𝐿 :𝐿↓𝑐 are the block of sequential Jacobians in the current window
𝑌 and the past window𝑌 ↓ 1, respectively; 𝑒𝐿 :𝐿+𝑐 and 𝑒𝐿 :𝐿↓𝑐 are
the corresponding blocks of time instances in these windows, which
are positionally encoded.

W=2

W=2

Current Window: Per-Frame Posed Jacobians

Previous Window: Augmented Corrective Jacobians

A A

Current Window: Augmented Corrective Jacobians
A A

Current Window: Corrective Jacobians

+

Current Window: Final Jacobians

Fig. 3. Windowed Jacobian Prediction.We use a#ention encodings of
the current window’s posed Jacobians (Eq 7) and the previous window’s
augmented corrective Jacobians (Eq 10) to predict the current window’s
augmented corrective Jacobians. These are projected to predict the current
window’s corrective Jacobians (Eq 12). These corrective’s are then added to
the posed Jacobians to obtain the current window’s final Jacobians. We use
window size𝑐 = 32.

These attention networks encode a window of Jacobians into a
single encoding as shown in Figure 3. Fixing the encoding sizes to
a constant size enables handling any arbitrary window/sequence
length without over#owing memory. The encoders distill the cur-
rent window of Jacobian predictions 𝑋𝐿 :𝐿+𝑐 and previously predicted
window of Corrective Jacobians 𝑋𝑍𝐿 :𝐿↓𝑐 . We pass the output of the
attention networks as conditioning to Equation (10) to integrate
and obtain the correctives in Equation (11) in the augmented space,
before projecting them in Equation (12) to obtain the "nal correc-
tives. We add the predicted correctives to the posed Jacobians 𝑋𝐿
from Equation (7). Finally, the predicted Jacobians 𝑋𝐿 are spatially
integrated using a di!erentiable Poisson solve [Nicolet et al. 2021],
in the coordinate frame of the "rst frame, to obtain the predicted
shape 𝑂𝐿 at frame number 𝑄 .

Loss terms. We train end-to-end using only a shape loss over
vertices of 𝑂𝐿 and a Jacobian loss. No extra annotation is required
for supervision. Our "nal objective function is,

Lvertex = ↔𝑂𝐿 ↓ 𝑂𝑒𝑓
𝐿 ↔2 and LJacobian = ↔ 𝑋𝐿 ↓ 𝑋𝑒𝑓𝐿 ↔2, (14)

aggregated together into the total loss as L = Lvertex + 𝑓LJacobian
with 𝑓 = 0.05 in our experiments.

4 Evaluation
We test SMF alongmultiple axes: (i) generalization to unseenmotion;
(ii) animation transfer to di!erent characters (shapes and topology;
meshes and scans); (iii) motion speci"cation using 3D keypoints,
using monocular videos, or sampling/interpolating in the Kinetic
Code (latent) space. No rigs or templates were used for any train-
ing or tests. We also test motion transfer from models trained on
humanoid characters to non-humanoids.
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Fig. 4. Unseen motion from Out-of-Distribution dataset (Mixamo) applied to in-the-wild shapes. We compare 𝑔𝑕𝑖 with NJF, TRJ, and Skeleton-free
transfer on unseen dance motions (le!: Hiphop; right: Shuffle) sampled from the out-of-distribution Mixamo dataset, applied to a 3D character found
in-the-wild (hole man, le!) and a Mixamo character (zombie, right). We modified NJF, TRJ to use keypoints instead, indicated by superscript TF. Competing
methods exhibit distortion artifacts while a#empting to follow the sampled source motion, while SMF (Ours) more accurately follows the sampled motion.

Fig. 5. Unseen motion applied to in-the-wild shapes. We compare 𝑔𝑕𝑖 with NJF, TRJ, and skeleton-free transfer on unseen motion (le!: Leg Backward
Rotation; right: One Leg Jump), applied to in-the-wild 3D characters. Baselines o!en do not adhere to source motion (circled in blue) or exhibit distortion
artifacts (circled in red). Our method transfers motion more accurately with far fewer shape distortion artifacts, while closely following the target motion.
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Table 1. "antitative evaluation unseen motion category, unseen shape.We compare SMF (ours) performance on unseen motion categories, against
multiple competing methods as well as ablated versions of our method. We note that SMF consistently produces results with the lowest errors, when compared
against ground truth full body target meshes. Please refer to the supplemental webpage for videos.

Method One Leg Jump Chicken Wings Walk Shake Shoulders Knees Shake Arms Shake Hips
L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N

Skeleton-free transfer [Liao et al. 2022] 4.60 0.67 0.44 13.67 3.27 0.65 0.50 13.78 5.27 0.78 0.65 19.27 5.27 0.72 0.46 13.97 4.71 0.62 0.40 12.82 3.74 0.70 0.52 15.39 3.83 0.75 0.56 16.19
𝑔𝑕𝑖 (3D) w/o 𝑈𝑁 encoding 4.56 0.70 0.32 12.56 4.22 0.68 0.35 12.86 5.84 0.71 0.34 12.92 4.19 0.68 0.30 11.85 5.20 0.77 0.36 13.79 5.21 0.80 0.44 19.79 4.48 0.71 0.35 13.26

𝑔𝑕𝑖 (2D keypoints) 5.74 0.72 0.33 12.42 6.50 0.80 0.44 19.43 6.87 0.79 0.36 13.49 6.77 0.87 0.38 15.63 8.33 0.88 0.39 14.81 8.81 0.96 0.50 22.39 7.74 0.89 0.43 17.06
𝑔𝑕𝑖 (3D keypoints) 2.79 0.51 0.25 9.82 3.74 0.61 0.34 12.72 3.73 0.54 0.27 10.24 3.09 0.58 0.28 11.44 3.78 0.63 0.30 11.27 4.41 0.69 0.41 18.45 3.40 0.58 0.31 12.28

Table 2. "antitative evaluation on Mixamo motion (unseen dataset), unseen stylized character. We compare SMF (ours) against competing methods
and report averaged errors (over 3 characters per motion) against rig-based Mixamo [Mixamo 2025] meshes as groundtruth. To work with Mixamo, we
modified TRJ and NJF to use keypoints instead of SMPL parameters, indicated by the superscript TF.

Method Hiphop Shuffling Surprised Shaking Hands Arguing
L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N L2-V L2-𝑇V L2-J L2-N

Skeleton-free transfer [Liao et al. 2022] 12.41 4.61 1.08 32.28 13.72 3.81 0.83 25.51 13.24 2.79 0.70 21.14 17.44 2.75 0.67 20.48 14.35 2.60 0.69 20.85
𝑉 𝑗 𝑖𝑂𝑃 [Aigerman et al. 2022] 25.57 9.03 1.13 45.94 25.38 9.02 1.11 45.67 26.27 8.96 1.10 45.24 31.80 10.68 1.19 45.80 29.22 9.71 1.14 45.26

𝑓𝑋𝑗𝑂𝑃 [Muralikrishnan et al. 2024] 15.23 5.86 0.87 35.09 16.91 6.62 0.85 33.54 14.22 5.20 0.64 24.95 15.99 5.94 0.73 30.25 15.17 5.39 0.70 28.62
𝑔𝑕𝑖 (3D keypoints) 8.35 3.58 0.62 24.38 7.97 3.50 0.60 23.46 4.60 2.00 0.28 10.36 5.78 2.31 0.43 17.86 5.98 2.27 0.40 16.03

Table 3. Generalization of Kinetic Codes. We compare the reconstruction error of the kinetic codes of seen and unseen motion. The minimal variation in
reconstruction errors indicates the generalizability of our codes to varied unseen motions.

Seen Motion Unseen Motion

Running Jumping Jacks Punching Jiggle on Toes Shake Hips Hips Shake Shoulders One Leg Jump Shake Arms Walk Chicken Wings

Error (in 10↓3 cm) 7.73 11.88 12.03 11.13 6.88 8.36 8.34 8.51 7.95 8.96 7.89

Motion datasets. We train our method (and baselines) on a single
dataset comprising of 5 human motion categories from the AMASS
dataset [Mahmood et al. 2019] with each category containing approx-
imately 6-7 motion sequences. We evaluate our method on unseen
motion categories from AMASS, sampled motions from Mixamo,
animal motion sequences from DeformingThings4D dataset [Li et al.
2021b], and in-the-wild monocular video recordings. The AMASS
dataset utilizes the SMPL body model [Loper et al. 2015], which
enables generation of motion sequences for diverse body-shapes
by varying the shape parameter, 𝑔 . Note that ours does not use this
SMPL information during training or inference.

To show that our method works on animals, we train our method
on motions from the DeformingThings4D dataset [Li et al. 2021b],
which provides animal 4D meshes as deforming sequences and test
it on unseen motion sequences.

We train SMF on 9 motion categories from AMASS, each consist-
ing of sequences performed by 6 humans. The number of frames
varies from 150-800. For 2D keypoints, we use 3 YouTube videos
(2 characters in total), totaling 1hr. Although the videos are noisy
as the camera angles change, SMF successfully learns due to the
Kinetic codes setup.

4.1 Baselines
We compare our method against recent per frame (pose transfer)
methods: NJF [Aigerman et al. 2022] and Skeleton-Free Pose Trans-
fer [Liao et al. 2022]. Due to unavailability of pre-processing code
for Skeleton-Free Pose Transfer, we use their pretrained models
which were trained on substantially more data including AMASS
and Mixamo motions as well as stylized characters. Additionally,
it requires the full mesh sequence along with T pose meshes for
source and target characters. In comparison, ours only takes in
sparse keypoints as input. We also compare ours with animation

transfer methods: TRJ [Muralikrishnan et al. 2024] (which uses tem-
plate) and an ablated version of our method without the Kinetic
Code (𝑃𝐿 ) encoding. In the table below, we highlight the di!erences
between SMF and baseline methods.

Methods Rig-Free Template-Free Temporally-Coherent Self-Supervised
NJF [Aigerman et al. 2022] 3 3 ✁ ✁

Skeleton Free [Liao et al. 2022] ✁ 3 ✁ ✁
TRJ [Muralikrishnan et al. 2024] 3 ✁ 3 ✁

SMF (ours) 3 3 3 3

Method Input Requirements
NJF [Aigerman et al. 2022] SMPL Pose Parameters

Skeleton Free [Liao et al. 2022] T-Posed Source & Target characters, full body source motion
TRJ [Muralikrishnan et al. 2024] SMPL Pose and Bodyshape Parameters

SMF (ours) Sparse Keypoints
𝑅 𝑋𝑁𝑓𝑖 Modi"ed & trained with Keypoints
𝑒𝑕𝑋𝑓𝑖 Modi"ed & trained with Keypoints

4.2 Metrics and Target Shapes
We evaluate our animation transfer with four main metrics:

• Vertex-to-vertex error (L2-V): Measures the Euclidean dis-
tance between ground-truth and predicted mesh vertices,
indicating how well the global motion is captured.

• Velocity error (L2-𝑖V): Quanti"es di!erences in vertex ve-
locities across frames, capturing the temporal smoothness
and cohesion of the animation.

• Jacobian error (L2-J): Assesses deviations in local transfor-
mations, revealing unintended deformations.

• Angular error of surface normals (L2-N): Calculates the
angle between predicted and ground-truth normals, indicat-
ing preservation of local surface orientations.

Target Shapes. We evaluate our method on diverse target shapes
varied body shapes sampled from SMPL models, human scans from
the FAUST dataset [Bogo et al. 2014], characters from the Mix-
amo library (e.g., skeleton zombie, triceratop, wolf), and in-the-wild

ACM Trans. Graph., Vol. 44, No. 6, Article 261. Publication date: December 2025.



261:8 • Sanjeev Muralikrishnan, Niladri Shekhar Du#, and Niloy J. Mitra

meshes from online 3D repositories (e.g., alien, hole-man). As pre-
processing, when applicable, we "xed non-manifold meshes.

4.3 $alitative Results
Generalization to unseen motion and shape. We present video

results on various unseen motion and unseen shapes on our supple-
mentary webpage. Our method produces consistently better gen-
eralization to unseen motion categories compared to NJF and TRJ,
both of which result in shape distortion and erroneous displace-
ments as they struggle to follow the input (unseen) motion as seen
in Figure 4. This is particularly highlighted in scenarios with large
displacements, e.g., feet and hands are widened or stretched thin.
Note that unlike in the original TRJ [Muralikrishnan et al. 2024],
where specialized models were separately trained for each motion
type, we retrained a single TRJ, across all the motion types.
SMF also generalizes to new shapes of varied body types, in-

cluding non-humans despite being trained only on humans. This
correspondence from coarse keypoints to a dense mapping across
diverse shapes is learned during the self-supervised motion transfer
setup and proves to be even capable of generalizing to multi-legged
creatures. It preserves the source motion and target shape and the
resultant motion is realistic and free from jitters/artifacts. We show
comparative results on unseen motion transfer to in-the-wild target
meshes in Figure 4. For high-genus shapes, such as the mesh with
holes (right half of Figure 4), NJF distorts the shape; TRJ fares com-
paratively better, it is still riddled with artifacts. Our Kinetic codes
not only preserve the target shape but also more faithfully adhere
to the motion. See supplemental webpage for video results.

Utilizing a latent representation for motion encoding with smooth
interpolation properties leads to improved generalization. Hence,
we do not see any signi"cant artifacts even when operating on in-
the-wild unseen target shapes for unseen motion. Moreover, we
notice without our motion encoding, regions around joints may
show melting (see around feet in Figure 6). The same holds true for
more accurate bending of the joints (see Figure 4). We note that the
AMASS motions contain foot-skating artifacts, and ours faithfully
reproduces them. However, we also tested ours on high-quality
Mixamo motions as shown in Figure 4 and supplemental webpage,
where foot skating is less pronounced. Despite being trained only
on AMASS, our model successfully transfers these clean Mixamo
motions without introducing any additional skating artifacts. This
demonstrates the model’s generalization not only to unseen motions
but also to di!erent levels of motion quality. This further suggests
that our self-supervised setting is promising and training on higher-
quality motion samples would likely yield better results.
Figure 1 and Figure 8 show more animation transfer examples

to di!erent humanoids and non-humanoids target meshes, sourced
from online in-the-wild meshes and the SHREC’07 dataset [Giorgi
et al. 2007]. Moreover, Figure 1 showcases support for di!erent types
of coarse motion speci"cations. In Figure 7, we show retargetting
results on target animal shapes from the D4D dataset.

Generalization to Mixamo sampled motions on stylized charac-
ters. To transfer motion from Mixamo [Mixamo 2025], we map its
joint locations (3D keypoints) to our system, (note the mapping is
not perfect due to misalignment between joint locations, requiring

Source Motion

Neural Jacobian Fields

Temporal Residual Jacobians

Skeleton-free Transfer

SMF (ours)

Fig. 6. Comparison of 𝑔𝑕𝑖 with baselines.We compare 𝑔𝑕𝑖 with Neu-
ral Jacobian Fields [Aigerman et al. 2022], Temporal Residual Jacobians [Mu-
ralikrishnan et al. 2024], and template-free skeleton-free transfer [Liao et al.
2022]. We measure the vertex-to-vertex error with ground truth and color-
code the results according to the measured error. Darker red indicates higher
error. 𝑔𝑕𝑖 accurately transfers the motion to the target mesh, while base-
lines struggle to follow the input motion and exhibit distortion artifacts.

target shape: wolf

target shape: wolf

target shape: triceratop

source motion: bear a�ack

source motion: deer walk

Fig. 7. Unseen motion to animal shapes. We use 𝑔𝑕𝑖 for animation
transfer to animal shapes (wolf and triceratop) for di"erent source motions
(top: bear attack; bo#om: deer walk). Our method transfers motion faith-
fully while closely following the target motion (see supplemental videos).
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Fig. 8. Human to non-human motion transfer Le": We compare 𝑔𝑕𝑖 with NJF, TRJ, and skeleton-free transfer on the task of transferring human motion
to non-human characters. Since bodyshape parameters are unavailable for these animals, we utilize modified NJF and TRJ models trained on keypoints, as
indicated by superscript TF. 𝑔𝑕𝑖 , without using SMPL bodyshape parameters, generalizes to wider range of shapes without distortion artifacts. Right: 𝑔𝑕𝑖
transfers varied unseen motions to several Out-of-Distribution characters. Unlike template-based methods, 𝑔𝑕𝑖 does not use any body-shape descriptor.

some approximation). Our results demonstrate strong generaliza-
tion, transferring thesemotions even to di!erent characters. Notably,
TRJ [Muralikrishnan et al. 2024] and NJF [Aigerman et al. 2022]
are unable to operate on Mixamo motion, as they strictly depend
on the SMPL template, which signi"cantly limits their #exibility.
Therefore, we modify their architecture to handle 3D coordinates
and remove the shape parameter (𝑔) module from TRJ. Please see
supplemental videos on the webpage for comparison. We further
evaluate it on 5 di!erent motions on 3 stylized characters with
ground truth generated from Mixamo. As seen in Table 2, we see
large improvements over existing methods. Except Skeleton-free
transfer (additionally trained on Mixamo data and stylized charac-
ters), all other baselines have been trained solely on the AMASS
dataset with human characters.

Generalization to monocular capture. 𝐿𝑀𝑁 can directly transfer
raw motion sequences from 2D input videos captured on handheld
cameras to a 3D target shape. We use our formulation based on
2D keypoints to directly operate on 2D input frames. This is a
particularly challenging problem as we are lifting motion from 2D
to a 3D shapewithout any explicit supervision or template shape. For
our 2D training setup, we additionally train only the autoencoder
on in-the-wild videos of exercise videos totaling 1 hour. We note
this is noisy but this helps the 𝑃𝐿 generalize to RGB captures better

as all our 2D renderings of AMASS sequences have a similar camera
setup. We extract 2D keypoints using HRNet [Sun et al. 2019], which
computes 2D keypoints frame by frame.We use Savitzky-Golay "lter
to smoothen the 2D signal as there is inter-frame noise.

Self-supervised training. Our self-supervised setup enables us to
learn motion transfer without requiring a template shape and using
only coarse motion parameters extracted at joints from the motion
dataset. This setup is the key to enabling learning from coarse input
motion (2D/3D keypoints) and transferring motion from 2D monoc-
ular captures and Mixamo sampled motion to 3D target shapes.

4.4 $antitative Comparison
We present quantitative results on unseen motion category and un-
seen motion sequence (within the same category) to unseen shape
in Tables 1 and 2. Generalization to unseen motion is a particularly
challenging problem as the Poisson solve in NJF and TRJ facilitates
shape preservation for unseen shape by following the coordinates of
the source shape. However, there is no such aid when generalizing to
unseen motion, which is an extrapolation problem. Our method sig-
ni"cantly outperforms NJF and TRJ for both motion accuracy as well
as detail preservation. The bene"ts of our 𝑃𝐿 are highlighted here as
we see signi"cantly lower errors against a baseline of 𝐿𝑀𝑁 without
𝑃𝐿 encoding. Compared to the per-frame pose transfer performed
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Source Motion

TRJTF

SMF (Ours)

Source Motion

TRJTF

SMF (Ours)

1250 3750 6250 7500 8500 1500 3500 5500 7500 9500

Fig. 9. Temporal stability and comparison on very long motion sequences. We compare 𝑔𝑕𝑖 and TRJ on various unseen folk dance sequences (10000
frames) from the AMASS dataset. Top. $alitative comparison on two unseen dance sequence. As the sequence progresses (frame numbers at top), TRJ
accumulates significant error, exacerbating distortion artifacts. In contrast, 𝑔𝑕𝑖 follows the source motion more closely. Bo#om. Per-frame vertex-to-vertex
(L2-V) error plots for three unseen dance sequences. TRJ displays a monotonically increasing error trend due to accumulation, while 𝑔𝑕𝑖 maintains a
consistently low error profile. This demonstrates 𝑔𝑕𝑖 ’s robustness to temporal dri! and its suitability for generating long motion sequences.

by Skeleton-Free Pose Transfer which has numerous artifacts and
unnatural deformations, SMF also ensures temporal consistency as
seen in lower velocity error (L2-𝑖V), measuring motion smoothness.

Error accumulation on long motion transfer. We choose 3 unseen,
complex, and long dance sequences (10000 frames) to analyze error
accumulation. We report per frame vertex-to-vertex (L2-V) error
in Figure 9. Compared to the only other temporal method, TRJ,
SMF does not exhibit a trend of monotonically increasing error
demonstrating its robustness to temporal drift and its suitability for
generating long motion sequences. The initial spike in error is due
to the motion moving away from the easy-to-model rest pose.

4.5 Performance
SMF’s lightweight architecture enables inference at >30 FPS on a
single RTX 4090 for a mesh with 30k faces (for high number of faces
this will be slower). This makes our system suitable for real-time
applications, following a one-time preprocessing step to compute
features on the target mesh. Furthermore, when using 2D keypoints,
the system could potentially be extended for real-time 2D-to-3D
animation transfer, as keypoint extraction with HRNet [Sun et al.
2019] is highly e$cient.

5 Conclusion
We have presented Self-supervised Motion Fields that convert sparse
motion into full-body character motion. We enable this by "rst
creating a temporally-informed motion latent space – Kinetic codes
– and then utilizing it to train spatial and temporal gradient predictor
networks jointly. The gradient signals are coupled via spatial and
temporal integration, and trained using full-body mesh sequences
for supervision. SMF does not require additional motion annotation,
is simple and robust to train, and generalizes across unseen motion
and character shape variations. We also do not use any template
model or rig, either during training or inference. We establish a new
SOTA on the AMASS dataset.

Limitations. While our formulation captures some secondary mo-
tion, we do not model secondary dynamics in any physically correct
way. Neither do we explicitly support collision handling to prevent
self-intersection (see the triceratop leg crossing in Figure 7). An
interesting future direction would be to implicitly handle collision
detection and simultaneously model character-garment interactions,
possibly using a transformer-based attention mechanism to capture
non-local interactions between body parts. Similar to single human
bodies [Frühstück et al. 2022], it will be interesting to combine dif-
ferent motion generators for di!erent parts of a character, allowing
mixing of motion modes. Finally, temporal sketching sequences [Fu
et al. 2011] can also be modeled with such a generative framework.
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